Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Theor Biol ; 542: 111109, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1757616

ABSTRACT

Contact tracing, case isolation, quarantine, social distancing, and other non-pharmaceutical interventions (NPIs) have been a cornerstone in managing the COVID-19 pandemic. However, their effects on disease dynamics are not fully understood. Saturation of contact tracing caused by the increase of infected individuals has been recognized as a crucial variable by healthcare systems worldwide. Here, we model this saturation process with a mechanistic and a phenomenological model and show that it induces an Allee effect which could determine an infection threshold between two alternative states-containment and outbreak. This transition was considered elsewhere as a response to the strength of NPIs, but here we show that they may be also determined by the number of infected individuals. As a consequence, timing of NPIs implementation and relaxation after containment is critical to their effectiveness. Containment strategies such as vaccination or mobility restriction may interact with contact tracing-induced Allee effect. Each strategy in isolation tends to show diminishing returns, with a less than proportional effect of the intervention on disease containment. However, when combined, their suppressing potential is enhanced. Relaxation of NPIs after disease containment--e.g. because vaccination--have to be performed in attention to avoid crossing the infection threshold required to a novel outbreak. The recognition of a contact tracing-induced Allee effect, its interaction with other NPIs and vaccination, and the existence of tipping points contributes to the understanding of several features of disease dynamics and its response to containment interventions. This knowledge may be of relevance for explaining the dynamics of diseases in different regions and, more importantly, as input for guiding the use of NPIs, vaccination campaigns, and its combination for the management of epidemic outbreaks.


Subject(s)
COVID-19 , Contact Tracing , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Quarantine , SARS-CoV-2
2.
Appl Math Comput ; 398: 125983, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1031636

ABSTRACT

Social distancing can be divided into two categories: spontaneous social distancing adopted by the individuals themselves, and public social distancing promoted by the government. Both types of social distancing have been proved to suppress the spread of infectious disease effectively. While previous studies examined the impact of each social distancing separately, the simultaneous impacts of them are less studied. In this research, we develop a mathematical model to analyze how spontaneous social distancing and public social distancing simultaneously affect the outbreak threshold of an infectious disease with asymptomatic infection. A communication-contact two-layer network is constructed to consider the difference between spontaneous social distancing and public social distancing. Based on link overlap of the two layers, the two-layer network is divided into three subnetworks: communication-only network, contact-only network, and overlapped network. Our results show that public social distancing can significantly increase the outbreak threshold of an infectious disease. To achieve better control effect, the subnetwork of higher infection risk should be more targeted by public social distancing, but the subnetworks of lower infection risk shouldn't be overlooked. The impact of spontaneous social distancing is relatively weak. On the one hand, spontaneous social distancing in the communication-only network has no impact on the outbreak threshold of the infectious disease. On the other hand, the impact of spontaneous social distancing in the overlapped network is highly dependent on the detection of asymptomatic infection sources. Moreover, public social distancing collaborates with infection detection on controlling an infectious disease, but their impacts can't add up perfectly. Besides, public social distancing is slightly less effective than infection detection, because infection detection can also promote spontaneous social distancing.

3.
Appl Math Comput ; 388: 125536, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-670600

ABSTRACT

The interaction between epidemic spreading and information diffusion is an interdisciplinary research problem. During an epidemic, people tend to take self-protective measures to reduce the infection risk. However, with the diffusion of rumor, people may be difficult to make an appropriate choice. How to reduce the negative impact of rumor and to control epidemic has become a critical issue in the social network. Elaborate mathematical model is instructive to understand such complex dynamics. In this paper, we develop a two-layer network to model the interaction between the spread of epidemic and the competitive diffusions of information. The results show that knowledge diffusion can eradicate both rumor and epidemic, where the penetration intensity of knowledge into rumor plays a vital role. Specifically, the penetration intensity of knowledge significantly increases the thresholds for rumor and epidemic to break out, even when the self-protective measure is not perfectly effective. But eradicating rumor shouldn't be equated with eradicating epidemic. The epidemic can be eradicated with rumor still diffusing, and the epidemic may keep spreading with rumor being eradicated. Moreover, the communication-layer network structure greatly affects the spread of epidemic in the contact-layer network. When people have more connections in the communication-layer network, the knowledge is more likely to diffuse widely, and the rumor and epidemic can be eradicated more efficiently. When the communication-layer network is sparse, a larger penetration intensity of knowledge into rumor is required to promote the diffusion of knowledge.

SELECTION OF CITATIONS
SEARCH DETAIL